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The correlation function and the correlation length are discussed in the 
theoretical framework of the Wilson-Feynman diagram expansion for small 
e ~ 4 -- d. It is shown explicitly that to order E ~ the scaling relation ), 
v ( 2 -  ~/) is satisfied and that the correlation function is a homogeneous 
function of k and f. The explicit form of the scaled correlation function is 
exhibited. 
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1. I N T R O D U C T I O N  

One of  the most  impor t an t  recent developments in  the theory of  critical 
phenomena  is a per turba t ion  expansion for the critical exponents in  powers 

of  e ----- 4 - -  d, where d i s  the n u m b e r  of d imensions  of the space. Invented by 
Wilson,  m it was first used to calculate the critical exponents ~, and  ~7 to 

second order in  e; it was then extended by Brezin et al. c~,3) to si tuations in  
which order is present in  the system. 
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Besides calculating t3 and ~ to the same order in e, they showed that up 
to this order the system obeys a homogeneous equation of state. Since it was 
pointed out by Griffiths (~ that for such systems ~ = 2 -- (:e -k 2/3), ~ does 
not have to be calculated explicitly and the critical exponent left to be 
calculated is v--the one corresponding to the correlation length. 

The value of v does not, of course, follow from the equation of state. It  
does, however, follow if the correlation function is a homogeneous function 
of k and ~, where ~ is the correlation length. In that case v can be determined 
from the scaling relation ~5) 

~, = v(2 -- ~7) (1) 

once ~, and ~ are known. 
It has been argued cG) that this homogeneity property follows from 

general renormalization group arguments together with the fact that we are 
dealing with a one-parameter theory. We feel that such arguments, though 
quite probably valid, do not make the calculation of the correlation function 
unnecessary. The reason is manifold. First, the equations in Ref. 6 and their 
solutions are discussed only in the disordered phase. Second, the equivalence 
of the Wilson-Feynman graph expansion and the method of Ref. 6 has not 
been demonstrated. They do agree on the value of ~ to order e ~, but whether 
they lead to the same correlation function or to the same equation of state is 
not yet clear. Finally, we feel that the strength of very general and abstract 
theorems in mathematical physics stems from the constructive calculational 
procedures attached to them. Such procedures do, in fact, make their appear- 
ance in the context of the Callan-Symanzik ~7~ renormalization group 
equations (see, e.g., Ref. 8). The results of the general theory should now be 
anchored in these procedures. 

Similarly, the Wilson-Feynman graph expansion is a well-defined 
method in which exponents can be calculated as an asymptotic series in 
E = 4 -- d. It is within this context that we calculate v both above and below 
the transition to order e 2. We show that the scaling relation (1) is satisfied and 
that to the same order the correlation function is homogeneous. 

Above the transition temperature the calculation is carried out with an 
order-parameter field possessing an arbitrary number n of components. 
However, below the transition our calculation is restricted to n = 1 in order 
to avoid additional complications arising from the appearance of  Goldstone 
bosons (see Ref. 3). There is no reason to expect any qualitative differences. 

2. R E V I E W  O F  N O T A T I O N  

The formulation of the phase transition problem in terms of a functional 
average, to be used here, has been already described by a number of authors 
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(see, e.g., Refs. 1, 3, and 9). Therefore we shall limit ourselves to some brief 
notes. 

The Hamiltonian of the Ising-like system (for the generalization to the 
n-vector model see Ref. 3) can be divided into two parts as follows(S): 

Ho/kr  = f dax{lrs2(x) + �89 2} (2) 

H z / k r  = f dax[uosd(x) %- 4uoms3(x) %- 1(8rl) sS(x) 

%- (r 0 @ 4u0 ms) ms(x) %- �89 ms + Uo md] (3) 

where//1 is used as a perturbation and the new symbols are 

3rl = r0 - -  r %- 12u0 ms (4) 

with r the reciprocal of the susceptibility and m the uniform part of the order- 
parameter field. 

In complete analogy to the treatment of many-body problems, the 
inverse correlation function satisfies a Dyson equation(9): 

g-l(k;  r) = g J ( k ;  r) - M(k;  r) (5) 

with a self-energy part M(k; r) and a free propagator 

g0(k; r) = (k s %- r) -1 (6) 

Since the susceptibility X is given in terms of the full correlation function 

X -1 = r = g-Z(k = 0; r) (7) 

the "mass" renormalization implied by the choice (6) for go(k; r) is expressed 
as 

M (k  -- 0; r) = 0 (8) 

meaning that there are no self-energy insertions for k = 0. 
The expansion of M(k; r) for n =: 1 in terms of 8r~ (diagramatically 

represented by • and Uo(represented by a dot) to second order, in the explicit 
dependence on ~rl and uo, includes the terms (see Fig. l) 

M(k; r) = --~r z -- 12uoD~(r) + 12uo~r~D2(r) %- 144u0SDs(r) Dz(r) 

%- 288Uo2mSD~(k; r) %- 96uo2D~(k; r) (9) 

 +0+0+8 
Fig. 1. Diagrams for the self-energy which include two 

vertices or less. 



320 Daniel J. A m i t  and A. Sheherbakov 

The solid line in Fig. 1 represents, diagramatically, a free propagator g0(k; r), 
and the wavy line represents the equilibrium value of the order parameter g .  
A more detailed discussion of ~ will be presented in Section 3. The symbols 
Dt(k; r) stand for the integrals 

Dz(r) = f daq(q ~ + r) -1 (10) 

D~(k; r) = f daq(q 2 + r)-l[(q @ k) 2 + r] -~, D2(k ---- O; r) ~ D~(r) (11) 

D~(k; r) : f daq dap(q ~ + r)-~(p 2 + r)-l[(q + p  -~ k) ~ + r]-l; 

D3(k = O; r) ~ D3(r ) (12) 

3. T H E  ORDER PARAMETER 

The value of the order parameter has to be known if we want to evaluate 
the contributions of the various terms of the expansion. In (3) we have 
introduced m as a uniform part of  the field, which means it must be treated as 
an extra functional variable to be integrated over. However, such an integra- 
tion can be avoided since the equilibrium value of m minimizes the free 
energy of the system, which is canonical with respect to m. We proceed as 
follows. 

Extracting this particular integration from the expression of the partition 
function 

J5 Z = dm Z(m) (13) 
oo 

where 

Z(m) = exp[--V(�89 mz -F u0ma)] f 2{s} exp[--H'(m)/kT] (14) 

we calculate the free energy as a logarithm of the partition function taken in 
the infinite-volume limit: 

F ~ - - k T  lim (l/V) In Z(~)  (15) 
l,"-> oo 

That means, that ~,  the equilibrium value of order parameter, is a minimum 
point (which is very sharp when V ~ oo) of a free energy as a function of m. 
Therefore it is calculated as a solution of the following equation: 

(~/Om) In Z(m) = 0 (16) 

This procedure is, of  course, completely equivalent ~9) to the one used in 
Refs. 2 and 3. Nevertheless we reproduce in some detail the calculation of ~ ,  
since its explicit value, not pointed out in Refs. 2 and 3, will be needed in 
what follows. 
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+ 

Fig. 2. Diagrams for the free energy which include two vertices or less. 

The free energy of the system (n = 1) can be expanded using the Wilson- 
Feynman graph technique. Up to the second order in 8rl and u0 the terms in 
the expansion can be given as (see Fig. 2) 

F(m)  = F o - -  �89 m2 - -  u0 m4 - -  �89 - -  3uoD12(r) + (�89 ~ D2(r) 

-? 12u0(�89 D2(r) Dz(r)  + 48Uo2m2Da(r) + 36uo~D2(r) Dl~(r) 

+ lZuo2D4(r) (17) 

with/70 an "unper turbed" free energy. The explicit form of D4(r) will not be 
needed. 

Above Tc the only solution of Eq. (16) is ~ = 0. Below To, after 
elimination of the trivial solution ~ = 0, Eq. (16) takes the form 

r - -  8u0 ~ -~ 288Uo~2D2(k  -~ 0; r) -? higher terms = 0 (18) 

where the renormalization expressed by Eq. (8) was used. The value of the 
coupling constant Uo = (2~rs/9) e has to be chosen in order to produce the 
proper critical behavior of  ~ .  The asymptotic solution of Eq. (18) can be 
obtained in the following way. Expanding the equilibrium value of the order 
parameter  in powers of  In r 

m s = P r  1-~ ~ s - -  A In r § .--) (19) 

and evaluating D2(k = 0; r) to give 

D2(k = 0; r) ~ (4rr)-~ [-- ln  r § In A s + (2r /A ~) - -  1] (20) 

(A is a momentum cutoff), we insert these expressions into Eq. (18) and find 
the latter expanded in powers o f t ,  r 2 ..... r In r, r In 2 r,..., and so on. 

Obviously, the equation holds for a finite interval of  values of  r if  all 
coefficients in this expansion equal zero. Thus equating the coefficient of  r to 
zero, we find, to lowest order in e, F - -  1/8Uo. The same procedure with the 
coefficient of  r In r leads to A = e/2. The equilibrium value of m follows: 

h5 s ~ (3/@r) ~ (l/E) r(1 - -  �89 In r + ...) (21) 

4. R E M A R K S  C O N C E R N I N G  T H E  A N A L Y S I S  O F  D I A G R A M S  

As a result of  the mass renormalization, Eq. (8), we find that ~rl ~ E. To 
see this, one inserts Eq. (9) into (8) and replaces u0 by its special value, which 
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Fig. 3 

O 
Fig. 4 

is of order E. Thus in order to perform a calculation to a given order in e, we 
have to keep all diagrams which include no more vertices than the desired 
order. This applies to vertices of both kinds, i.e., two- and four-point vertices. 
There is one exception to this rule, namely when order-parameter "legs" 
appear in diagrams below the transition. Since the order parameter appears 
as a factor in a three-point interaction, it always enters diagrams in pairs, 
that is, in the combination Uo2~ 2. Furthermore, according to Eq. (21), c~,31 
Uo ~2 is of order unity. Thus, two vertices with ~ "legs" raise the order of a 
diagram by only one power of e. For  example, the diagram in Fig. 3 contri- 
butes to first order in e. 

As a consequence, the only diagram of M that has to be considered up 
to order e2 above To, which is also the only one without ~ "legs" below To, 
is the one shown in Fig. 4. 

On the other hand, quite a few diagrams which include ~ have to be 
considered up to this order in e. They are shown in Fig. 5. These diagrams 
will be considered in detail below. 

Finally, such diagrams as shown in Fig. 6, which are "dangerous" since 
they propagate the same momentum inside of a line and thus become very 
divergent on integration, do not enter. They all cancel, to all orders, as a 
special case of  renormalization of the propagator at k = 0, Eq. (8). 

- K S > -  § § + § 

(a) (b) (c) (d) 

(e) Cf) Cg) 
Fig. 5 

Fig. 6 
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5. C O R R E L A T I O N  L E N G T H  

We define the  inverse o f  the correlation length as an imaginary  pole o f  
g ( k ;  r), (8,1~ since it gives the exponential decay range o f  the spatial cor- 
relation function, namely 

g - a ( k  = i~-~; r )  = 0 (22) 

Thus in the interval f rom k 2 = - - s  e-s, where g - ~ ( k  ~ = --se-2; r )  = O, to 
k s ---- 0, with g - ~ ( k  s = 0; r)  = r, g-~(kS; r )  is an increasing function o f  k s. 
Since at r -+  0, ~-z _+ 0, it can be approximated in this interval by the straight 
line, with an accuracy dependent on T - -  T , .  Then it follows that  

s e-2 ~ a i r  (23) 

with a as a derivative ofg-a(kS; r) with respect to k 2 at k 2 = 0. 
I t  is easy to see that  the definition (22), up  to a constant  factor, coincides 

with the one given in Ref. 12, where ~s is defined as an effective quadrat ic  
extent o f  the correlation funct ion:  

~ = X - 1 6 2 g ( k ;  ~-o- 

which after some simple transformations takes the fo rm 

~-2 2 eg-l(kZ; r) ~=-o 
- -  r a ( k  2) _ ( 2 5 )  

We make use o f  the definition (22) and Eqs. (5) and (8) to obtain:  

g - l ( k  = i~-~; r)  = 0 = _ ~ - s  + r - -  [ M ( k  = i~-*; r )  - -  M ( k  ----- 0; r)] (26) 

Since the critical behavior  o f  g ( k ;  r)  is known, 

g-~(k ;  r ~- O) = A ( Q  kS-n (27) 

another  useful relation can be derived. With g - a ( k  = 0; r = 0 ) =  0 we 
arrive at 

g - l ( k ;  r = O) = A k  s-" = k ~ - -  [M(k; r = 0) - -  M ( k  = 0; r = 0)] (28) 

f rom which one usually determines ~7- Since ~ = 0 at T ----- T~, the only term 
in (28) which does no t  vanish to second order in E is 

96Uo2[Da(k; r = O) - -  D z ( k  = 0; r = 0)] (29) 

which corresponds to the diagram o f  Fig. 4 [eq. (12)J. Evaluation to lowest 
order in E gives 

D s ( k ;  0) - -  Ds(0; 0) ,~ (4rr) -'t k~( ln  k - -  In A - -  ~) 0 0 )  

822/9/4-4 
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The asymptotic solution of , / c a n  be easily obtained by analogy to the 
method used in Section 3. We expand k ~-n in the lhs of  Eq. (28) in powers of  
In k, make use of  (30), and equate the coefficients of  k ~ and k s I n k  on both 
sides of  Eq. (28), to find 

A(e) = 1 + O(d);  • = e2/54 (31) 

Finally, in order to derive the equation which will be used to determine ~, 
we evaluate Eq. (28) at k = i~ -~ �9 n (n is a unit vector, and k 2-, is considered 
as k s t k 1-7) and combine it with (26). The resulting equation reads 

r - -  ~:-(2-,~) _ {[M(k = i~-1; r)  - -  M ( k  = 0; r)] 

- -  [M(k = i ~ - 1 ;  0 )  - -  M(k  = 0 ,  0)1} = 0 ( 3 2 )  

All self-energy terms entering this equation can be separated into two 
parts, as follows: 

r - -  ~-(2-~) _ u o Y l ( k  = i~-z;  r)  - -  U o ~ Y z ( k  = i~-1; r) = 0 (33) 

where uo2fl denotes ~-independent terms (contributes only one diagram, 
depicted in Fig. 4) and u o ~ ~  denotes ~-dependent  terms (contributing 
diagrams are shown in Fig. 5). These terms will be considered in detail in the 
following section. 

6. C A L C U L A T I O N  O F  T H E  C O R R E L A T I O N  L E N G T H  

The correlation length is assumed to have the form ~-1,-~ r 1 / ( 2 - ~  

leading to 

Expanding ~-(2-~) in powers of In r, we insert it into Eq. (33) and arrive at 

r - ~0r[1 q- �89 - ~/) In r q-- . . ]  - uo~fl(k = ise-z; r)  - Uo2m2f2(k = i~-1; r)  = 0 

(34) 

To lowest order in c, ~0 = 1, and p is obtained by equating the coefficient 
of  r In r on the lhs of  Eq. (34) to zero. In order to derive this coefficient, we 
have to extract the contributions off~ andf~ to the term r In r. The analysis 
will be carried out both above and below the transition temperature. 

6.1. The System Above the Transition 

Since ~ = 0 at T > T~, only f l ( k  = i~-1; r)  is left in Eq. (34) and, as 
was already mentioned, the only contributing diagram is the one of Fig. 4 
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[for the corresponding integral see Eq. (12)]. Taking into account the 
symmetry factor, which is easily obtained in the case of  the n-component 
field, 

f~(k; r) = 32(n + 2)[ADa(k; r) -- ADa(k; 0)] (35) 

where we use the notation 

AF(k) : F(k) -- F(O) (36) 

I t  is straightforward to show that the term f~(k = is r) does not 
produce a factor r In r (1~ The argument is as follows: sincefi  enters Eq. (34) 
with a coefficient Uo 2 ~ E 2, f~ has to be evaluated at e = 0. At ~ : 0 all the 
terms in f~ are well defined at r := ~-~ = 0 and, furthermore, the total 
derivative off~ with respect to r vanishes at r = ~-1 = 0. Thus, up to order 
e2,f~(k = i(-a; r) does not contribute a term of the form r In r, consequently, 
p = ~ and Eq. (1) is satisfied at least to this order in e. 

6.2. The System Below the Transition 

Below Tc the contribution of f~(k : i(-~; r) is exactly the same as 
above, and therefore is of  no interest. However, a new term, denoted 

Z,o~m~(k = i~-1; r), 

appears as a sum of contributions of  the diagrams possessing order-para- 
meter "legs". These contributions, after subtraction of their values at k = 0 
[see Eq. (32)], lead to the explicit expression o f f2 ,  up to second order in e, at 
n ~ l a s  

f2(k; r) = 288[AD2(k; r) -- 2 8rl AD((k;  r) 

-- 24uoDl(r) AD((k ;  r) --  12u0 AD22(k; r) 

--  48Uo AD4(k; r) + 576u0~m 2 AD4'(k; r) + 576Uo2m 2 ADs(k; r)] 

(37) 

where exposition of  various expansion terms follows the order of  contributing 
diagrams depicted in Fig. 5. The new symbols are 

D((k;  r) = f dgq(q 2 + r)-2[(q + k) 2 + r] -1 (38) 

[a common part  of  diagrams (b) and (c)]; 

D~(k; r) = f daq d~p(q ~ + r)-Z[(q - / k )  2 + r]-l(p 2 -~ r)-Z[(q + p)2 + r]-i  

[diagram (e)]; (39) 
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= f daq d~p(q ~ + r)-2[(q + k) 2 4- r]-~(P 2 + r)-~[(q + p)~ q- r] -1 D~'(k; r) 
[diagram (f)]; (40) 

----- f daq d~p(q ~ ~- r)-l[(q @ k) 2 @ r]-l[(q -- p)~ + r] -1 Ds(k; r) 

X (p2 ~_ r)-l[(p + k)~ + r ]<  (41) 
[diagram (g)]. 

Since u02~ 2 ~ er(1 -- �89 In r), f2 has to be evaluated to first order in e. 
However, only its first term--contribution of the first-order diagram (a)--has 
to be evaluated to this order, while the next ones, arising from the second- 
order diagrams (b)-(g), have to be evaluated only to lowest order in E (E = 0). 

To extract the (ln r) dependence of these terms, we note the following. 
Every "bubblelike" part of the diagram at q ----- 0, where q is the transfered 
momentum of the "bubble," produces a contribution to the term In r [cf. 
Eq. (20)]. Among the second-order diagrams considered such "bubbles" 
appear in diagrams (d), (e), and (f). These diagrams can be divided into two 
classes [see appendix, Eqs. (A.4)-(A.6)]--those that are (ln r) dependent 
[since they include D2(k = 0; r) = D~(r)] and those that are (In r) independent, 
the latter being neglected in the analysis of this section. 

Since the D2(k = 0; r) part of diagram (f) together with ~r 1 and the 
uoDi(r) insertions of diagrams (b) and (c) form, to first order in E, the renor- 
malized self-energy M(Ic = 0) = 0, the sum of these diagrams cancels. 

Finally, we pick out the remaining (ln r)-dependent parts of the 
f2(k = it-I;  r) terms (considered in the appendix to order d), insert them 
into Eq. (37), and obtain 

f2(k = i~ -~ ; r) = 288[(1 -- �89 In r) C2 ~ 72uoD2(r) C2] 

288(1 ,-l- �89 In r) C2 (42) 

where 72uoD2(r) C2 ~ --E (In r) C~ is the sum of the (In r)-dependent parts 
of diagrams (d) and (e). Since the termf2(k = i~-i; r) enters Eq. (34) multi- 
plied by the factor u0~h52 ~ Er(1 -- �89 In r), we find that the contribution of 
f2 to the term r In r, up to second order in e, is equal to zero. 

Thus, again, p = ,/, and we arrive at the conclusion that Eq. (1) is satis- 
fied both above and below T, ,  at least to order d.  

7. SCALED E Q U A T I O N  FOR T H E  C O R R E L A T I O N  F U N C T I O N  

The homogeneity of the correlation function as a function of  k and 
follows from general considerations. (~ We proceed to show explicitly 
this homogeneity in the framework of our calculation. The considerations 
are analogous to those of the previous section. 
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Taking into account all the terms contributing up to second order in e, 
the inverse correlation function is calculated from Eqs. (5), (8), and (28) (the 
n = 1 case is considered here) as 

g - l ( k ;  r )  = A k  2-~ § r - -  Uo2fx(k; r) -- Uo2/g~f2(k; r) (43) 

where f l  andf~ have been introduced in Eqs. (35) and (37). The value of the 
coefficient A is 

A = 1 + (e2/54)(-~ + In A) 

In order to put all integrals into explicit dependence on the single scaled 
variable x, with 

x = A1/(2-~)k~ (44) 

some simple transformations were performed (see the appendix). 
To lowest order in e, 

f~(k; r) = 9 6 [ A D s ( k ;  r)  - -  A D a ( k ;  0)] ~ 96r~3(x) (45) 

[appendix, Eq. (A.3)]. The second term in Eel. (43), ~(k;  r), is the sum of 
r~-dependent contributions. When each of them is calculated to the needed 
order in e, it can be reduced to the form [appendix, Eels. (A.1), (A.4) . . . .  , 
(A.7)] 

f2(k; r) = 288[(1 -- �89 In r)  ~ z ( x )  - -  72uoD~(r) .@2(x) - -  lZuo~z~(x) 

-- 48Uo94(x) + 72Uo~4'(x) + 72Uo~5(x)] (46) 

where, due to the renormalization of the self-energy, Eq. (8), the same can- 
cellation of diagrams (b), (c), and (f) (see Fig. 5) at q = 0 (el is the transferred 
momentum inside the "bubble") was taken into account. Furthermore, 
following exactly the procedure of Section 6, the (In r) dependence off,(k; r) in 
Eq. (43) is cancelled up to order d by the factor Uo2~ 2 ~ er(1 -- ~-e In r). 

Finally, introducing y via 

y = g - l ( k ;  r ) /g -~(k ;  O) = g-~(k ;  r ) / A k  ~-n (47) 

the scaled equation for the correlation function, to second order in e, is 
obtained as 

x2-~y  = 1 q-  x 2-n - -  36Uo~2(x) -- 48Uo212~(x) -- 9N2Z(x) 

-- 36~a(x) -k 54N4'(x) q- 54Ns(x)] (48) 

A P P E N D I X  

All A integrals to be considered here are convergent ones. This can be 
seen from their expressions, presented below. Therefore there is no need to 
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introduce a momentum cutoff, as, for example, in Dz(k = 0; r)[see Eq. (20)]. 
Once we set A--~ oo the explicit r dependence of these integrals can be 
extracted by the simple replacement of variables: q = rl/Zqz, p = rl/Zq2, and 
k = rX/Znx (n is a unit vector). We proceed as follows. 

The contribution of the first-order diagram (a) (Fig. 5) to the term In r 
has to be evaluated up to first order in e; it reads 

where 

ADz(k; r) ~ (1 -- �89 In r) ~2(x) A.1 

~z(x) : f d~-'ql(q12 -[- 1)-1{[(ql + nx) 2 + 1] -1 -- (ql z + 1) -~} 

In order to calculate the correlation length, all diagrams have to be 
evaluated at k : i~:-ln, i.e., x : i. The result for diagram (a) can be denoted 
as ~z(x : i) : C2, C2 : const. 

All remaining terms--contributions of the second-order diagrams 
[(b)-(f), Fig. 5]--to lowest order in E (e : 0) can be given in the following 
form. 

The common part of diagrams (b) and (c): 

ADz'(k; r) : r - l~z ' (x)  

~2'(x) = f d4ql(ql 2 + 1)-z{[(ql + nx) z q- 1] -1 -- (qx = - /  1) -1} 

(A.2) 

with 

The single diagram without order-parameter "legs" (Fig. 4) produces 

AD3(k; r) -- ADz(k;  0) = rN3(x) 

~.~3(x) = f d~qa daqz(ql 2 -I- 1)-1(q22 -t- 1)-z 

• {[(ql + q2 + nx) z + 1] -1 - -  [(ql -q- qz) z q- 1] -1 

- -  (qz + q2 + nx) -2 -t- (ql + q~)-2} (A.3) 

The diagram (d) (Fig. 5) can be naturally divided into (In r)-dependent and 
-independent parts as 

ADzZ(k; r) = DzZ(k; r) -- D2Z(0; r) : 2Dz(r) ADs(k; r) + lADs(k; r)] z 

2Dz(r) ~z(x) + ~zZ(x) (A.4) 

In order to extract the (ln r) dependence from diagrams (e) and (f) 
[Eqs. (39) and (40)], that is, to separate the value of the "bubble" at q = 0 as 
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the On r)-dependent  par t  f rom the remaining (In r)- independent par t  o f  the 
diagram, we use the following simple t ransformat ion:  

[(q + p)2 + r]-I = (p2 + r)-~ + ([(q + p)2 + r]-~ _ (p2 + r)-~} 

The result is 

AD4(k; r) = D2(r) ~ ( x )  + ~4(x); ~4(x = i) = C4 (A.5) 

/ID4'(k; r) = r-Z[O2(r) ~ ' ( x )  -t- ~4'(x)];  ~4 ' (x  = i) = C4' (A.6) 

where 

~, (x)  = f d~ql d4q2(ql 2 + 1)-1(q~ 2 + 1) -1 F(qx, q2 ; x) 

~4'(x) = f d'qz d4q2(ql 2 + 1)-'~(q~ 2 + 1) -1 F(qz,  q~ ; x); 

and 

F(qz,  q2 ; x )  -= {[(qz + nx) 2 + 1] -1 - -  (q2 _? I)-~}{[(q1 + q2)2 + 1]-1 

_ (q2 + 1)-x) 

Finally, diagram (g) does not  contribute to the term In r to second order 
in E: 

ADs(k; r) = r - l ~ ( x )  (A.7) 

~5(x) = f d~qz d4q2(ql 2 + l)-~(q2 2 + 1)-l[(qz - -  q2) 2 + 1] -z 

• {[(q~ + nx) ~ + 1]-~[(qz + nx) 2 + I] -1 

- -  (ql ~ + 1)-l(qz 2 + 1)-1~ 
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